首页> 外文OA文献 >Discriminative Sparse Coding on Multi-Manifold for Data Representation and Classification
【2h】

Discriminative Sparse Coding on Multi-Manifold for Data Representation and Classification

机译:用于数据表示的多流形上的判别稀疏编码   和分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sparse coding has been popularly used as an effective data representationmethod in various applications, such as computer vision, medical imaging andbioinformatics, etc. However, the conventional sparse coding algorithms and itsmanifold regularized variants (graph sparse coding and Laplacian sparsecoding), learn the codebook and codes in a unsupervised manner and neglect theclass information available in the training set. To address this problem, inthis paper we propose a novel discriminative sparse coding method based onmulti-manifold, by learning discriminative class-conditional codebooks andsparse codes from both data feature space and class labels. First, the entiretraining set is partitioned into multiple manifolds according to the classlabels. Then, we formulate the sparse coding as a manifold-manifold matchingproblem and learn class-conditional codebooks and codes to maximize themanifold margins of different classes. Lastly, we present a data point-manifoldmatching error based strategy to classify the unlabeled data point.Experimental results on somatic mutations identification and breast tumorsclassification in ultrasonic images tasks demonstrate the efficacy of theproposed data representation-classification approach.
机译:稀疏编码已被广泛用作计算机视觉,医学成像和生物信息学等各种应用中的有效数据表示方法。但是,常规稀疏编码算法及其流形正规化变体(图形稀疏编码和Laplacian稀疏编码),学习密码本和以无人监督的方式进行编码,而忽略了训练集中可用的班级信息。为了解决这个问题,本文通过从数据特征空间和分类标签中学习判别类条件码本和稀疏码,提出了一种基于多流形的判别稀疏编码方法。首先,根据类标签将整个训练集划分为多个流形。然后,我们将稀疏编码公式化为流形流形匹配问题,并学习类条件码本和代码以最大程度地提高它们在不同类中的歧义余量。最后,我们提出了一种基于数据点流形匹配误差的策略对未标记的数据点进行分类。超声图像任务中体细胞突变鉴定和乳腺肿瘤分类的实验结果证明了所提出的数据表示分类方法的有效性。

著录项

  • 作者

    Wang, Jing-Yan;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号